平方根口诀表「附:开平方的整数」

大家好,今天吴墨柏精心为你准备了干货平方根口诀表,开平方的整数,以及平方根,口诀,整数的相关内容干货,只要你每天都能来,我就能每天整理一些不错的干货分享给你们!

题记自然科学只有数学的形式才称得上是科学。——康德(Kant,1724-1804)开场小故事宋代杨辉所著《田亩比类乘除捷法》书中有这样一道题:直田积864步,只云阔不及长12步。问阔及长各几步?答:阔24步,长36步。这题古算解法有四种:带从开方法、益积开方法、减从开方法和四因积步法。前三种方法比较繁琐,就不介绍了,说说第四种四因积步法。此图由《周髀算经》中的弦图变通而来。如图,先求长方

题记

自然科学只有数学的形式才称得上是科学。

——康德(Kant,1724-1804)

开场小故事

宋代杨辉所著《田亩比类乘除捷法》书中有这样一道题:直田积864步,只云阔不及长12步。问阔及长各几步?答:阔24步,长36步。

这题古算解法有四种:带从开方法、益积开方法、减从开方法和四因积步法。前三种方法比较繁琐,就不介绍了,说说第四种四因积步法。

平方根口诀表,开平方的整数,平方根,口诀,整数

此图由《周髀算经》中的弦图变通而来。

如图,先求长方形面积的4倍,得864×4=3456,再看图中的小正方形,它的边长恰好是长方形的长减宽的差,它的面积当然就是差的平方。得12*12=144,大正方形的面积就是3456+144=3600,开方得大正方形的边长为60,也就是说长方形的长加宽是60,于是问题转化为小学数学的和差问题。用和差法得出:长=36,宽=24

这个方法的代数原理是:(a-b)²+4ab=a²-2ab+b²+4ab=a²+2ab+b²=(a+b)²

女儿在做奥数作业时遇到一道题不会,问我怎么做?题目如下:甲数比乙数大9,两数的积是792,求这两个数分别是多少?

这不就是改编的那道古算名题吗?于是我就在草稿纸上画图,用四因积步法解题:

792×4=3168,加上九九八十一就等于3249,开方用手机计算器,手机竖屏是标准型,横屏则是科学型,立马算出平方根是57,于是这两个数就是33和24

画外音:唐代僧一行(出家前原名张遂)在历法计算中,曾经解了一个一元二次方程,如果这个方程是x²+px=q,p>0,q>0,那么一行求得的正根是 ,画外音结束。

把作业对付完了,我的思绪却飘向远方,好像有什么不对。

第三级数学运算

杨辉的那道题目有鲜明的特色,数字都设计得非常巧妙,计算过程因为数字凑得整齐而毫不费力,在辛苦的解题过程之后,给人赏心悦目的感受。这也是中国古算的一大特色吧。杨辉的题目巧妙地回避了开方的难点,但对奥数题目而言,就没有回避开方的退路,必须正面解决这个如何开方的问题。(不要误解,我绝不会说杨辉不会开方,开方对宋代数学家来说犹如探囊取物,易如反掌。)

数学运算共有七种,可分为3个等级。第一级运算有两种,加法和减法,互为逆运算;第二级运算也有两种,乘法和除法,互为逆运算;第三级运算有三种,乘方、开方和对数。乘方是第五种运算,它有两种逆运算,即开方和对数。重点谈谈第六种运算:开方。本文只讲开平方。

公元前300年古希腊的《几何原本》就有乘法公式(a+b)²,古希腊人知道平方数之外,2、3、5……17的平方根是无理数,这甚至还引发了第一次数学危机。

巴比伦人使用60进位制,把一天分为24小时,一小时有60分,一分有60秒,与现代的时间单位一致。巴比伦人知道除法公式,掌握了勾股定理,计算 的值精确到小数点后第5位。有有理数平方根表,无理数平方根的计算方法后面我会详细介绍。巴比伦人使用近似计算公式

平方根口诀表,开平方的整数,平方根,口诀,整数

巴比伦60进位制的符号

平方根口诀表,开平方的整数,平方根,口诀,整数

巴比伦的平方表和立方表

9世纪,印度人就能解二次方程,知道一个数的平方根有两个值,还知道负数的平方根不可能是实数。

米歇尔·斯蒂弗尔(1487-1567年)写出了直到开七次方的数值求根法。

我国古代是用筹算来进行整数和分数的四则运算和开方。我国至少在公元前三四百年就有九九口诀(九九乘法表)。古书记载有筹算开平方的有《九章算术》(东汉初年)、《张丘建算经》、《孙子算经》(晋朝,四世纪末)、《夏侯阳算经》(南北朝夏侯阳的原著失传,现在的版本是八世纪唐朝韩延编辑的实用算书)。

《九章算术》有一道例题:求55225的平方根。对筹算的开方算法刘徽画了个几何图形来说明,就非常方便理解。

平方根口诀表,开平方的整数,平方根,口诀,整数

刘徽用来说明开平方法的几何图形

看图,用一个正方形来表示被开方数,把它分为七个部分:黄甲幂(a²)、黄乙幂(b²)、黄丙幂(c²)、两个朱幂(ab)、两个青幂【(a+b)c】。

看图得出正方形的面积为

(a+b+c)²=a²+2ab+b²+2(a+b)c+c²=a²+(2a+b)b+[2(a+b)+c]c

用图示方法来解例题,设a=200,b=30,c=5

得到55225=235²=200²+(2×200+30)×30+[2×(200+30)+5]×5

遇到开方不尽的情况,可在整数方根后面带一个分数来表示所求方根的近似值。刘徽在《九章算术》的注里介绍了“不加借算”和“加借算”两种方法。

“不加借算”举例: =484 ,方法是设A=a²+r,得

“加借算”举例: =114 ,方法是设A=a²+r,得

这两种方法所得近似值较为精确,始创于我国三世纪。阿拉伯到了11世纪也有了同样的方法。另外,刘徽提出了开平方不尽可以续开小数的方法,与现代的方法类似,可以得到任意精确度的平方根近似值。

现代的笔算方法举例:先说定位。一个2位数的平方可能是3位数或4位数。一般而言,一个n位数的平方,是2n-1位数或2n位数。因为开方是乘方的逆运算,所以一个2n-1位数或2n位数的平方根是n位数。因此,很容易确定根的位数:从小数点开始,将被开方数向两边按两个数字一节来分节。根的小数点前后位数和小数点前后节数相等。

平方根口诀表,开平方的整数,平方根,口诀,整数

笔算12.5开平方

开平方的其他方法:珠算可以开平方、计算尺和查数学用表可以开平方。用不等式可以求根。用对数也可以。木匠有自己的方法来解决开平方和开立方的问题。以下重点介绍巴比伦人开平方的古法。

谈祥柏先生在《乐在其中的数学》一书中介绍了这个巴比伦人使用的古法。这个算法本质上属于迭代法。迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。这个算法很简单,只需要做除法和求算术平均值。举个例子,大家一看就会。

19是个质数,质数的平方根都是无理数。我们来看看怎么求19的平方根。请看下图:

平方根口诀表,开平方的整数,平方根,口诀,整数

迭代法计算19的平方根

再看下图,迭代法的精髓——自动纠错,一目了然。

平方根口诀表,开平方的整数,平方根,口诀,整数

迭代法的精髓——自动纠错

思考题:为什么可以自动纠错?

插播一段课文:小学《语文》五年级上册第24课

古人谈读书

敏而好学,不耻下问。

知之为知之,不知为不知,是知也。

默而识之,学而不厌,诲人不倦。

——《论语》

余尝谓:读书有三到,谓心到,眼到,口到。心不在此,则眼不看仔细,心眼既不专一,却只漫浪诵读,决不能记,记亦不能久也。三到之中,心到最急。心既到矣,眼口岂不到乎? ——[宋]朱熹

盖士人读书,第一要有志,第二要有识,第三要有恒。有志则断不甘为下流;有识则知学问无尽,不敢以一得自足,如河伯之观海,如井蛙之窥天,皆无识者也;有恒者则断无不成之事。此三者缺一不可。

——[清]曾国藩

平方根口诀表,开平方的整数,平方根,口诀,整数

小学五年级课文预习

回到前面的思考题,想一想为什么会自动纠错。因为迭代过程是收敛的,背后的数学原理是一个命题。张景中院士在他的著作《从 谈起》中,一语道破天机,请看命题6:如果 是 的一个近似值,且已知误差 ,则取 ,当 时, 是 的一个更好的近似值。 和 的误差满足下列不等式

可以改写为迭代格式 ,可以取任意初值 ,利用迭代格式计算 ,简称开方。

谈祥柏教授常说“无事好做非非想”,我党的好干部焦裕禄说“吃别人嚼过的馍不香”。于是我就想,这个方法还可不可以改进呢?算法是求连续两个值的算术平均,能否改成其它的平均数呢?平均数有很多种,有算术平均数、加权平均数、几何平均数和调和平均数。算术平均数(A)、几何平均数(G)及调和平均数(H)统称为毕达哥拉斯平均数。考虑过,换个平均数是否效率更高呢?如果用加权平均数,怎么计算呢?

首先想到加权平均数。a、b两个数的算术平均数是简单相加再除以2,加权平均该如何操作呢?我的方案是0.382a+0.618b,相当于把两个数据的权数设定为0.382和0.618。算术平均数可以理解为权数相等的加权平均数。两个近似值,一个比另一个更好,它们的权数应该不相等。说干就干,我立刻用Excel搞实验,验证想法是否正确。

结果是理想很丰满,现实很骨感,我被实验结果狠狠打脸。

推荐阅读https://blog.csdn.net/q247538614/article/details/85936613(几何平均数和调和平均数是什么?有什么作用?详细资料讨论他们的区别)。

但我是一个不死心的人,于是又搞起了下面的实验。

平方根口诀表,开平方的整数,平方根,口诀,整数

Excel函数计算19的平方根

平方根口诀表,开平方的整数,平方根,口诀,整数

Excel函数计算101的平方根

平方根口诀表,开平方的整数,平方根,口诀,整数

计算19的平方根

最终得出结论,现有算法是最好的,没有改进的余地和必要。折腾了好半天的功夫,是否是白费力呢?我的回答是人生没有白走的路,每一步都算数。这是我看了电影《冈仁波齐》后学到的宝贵经验和教训。

好了,今天就给各位讲到这里,如果能帮到你我就很开心了,看完了平方根口诀表「附:开平方的整数」,收获很多,欢迎帮忙分享一下。我在这边先谢谢各位了哈!

本文发布者:万事通,不代表寂寞网立场,转载请注明出处:https://www.jimowang.com/p/24965.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jimowangmail@126.com 举报,一经查实,本站将立刻删除。

(0)
上一篇 2022年12月26日 09:38
下一篇 2022年12月26日 09:40

相关推荐

  • 陨石和人造卫星是天体吗「详细讲解:人造卫星是天体吗」

    很高兴又和小伙伴们见面了,这次周艳娣主要整理了一些关于陨石和人造卫星是天体吗,人造卫星是天体吗的事情,以及火星,人造卫星,天体,陨石,探测器等等相关的各种干货,精心为你准备的干货,通过这篇文章相信你能有所收货! 作者:吕博瀚 中国科学院国家空间科学中心 中国科学院月球与深空探测总体部 卫星是指在封闭的轨道上周期性绕行星运行的天体,可以分为人造卫星和自然卫星。…

    2023年2月12日 自媒体
  • 电动车哪种电池好:最新常见的2种电动车电池优劣对比

    美好的1天即将在这里开始,下面就由笔者韩国湘来一起聊聊电动车哪种电池好,常见的2种电动车电池优劣对比,还有关于锂电池,电池,电动车这些的内容,经过我各种整理总结之后,决定写下这篇文章分享给大家。 虽然汽车的普及为我们的生活提供了非常大的便利,但随之而来的道路交通拥挤状况,就让很多车主感到心烦了。在这个时候路边行驶的电动车就让他们感觉非常的羡慕,因为这些人不会…

    2023年1月6日 自媒体
  • 2023年4月23日补星期几的课 推荐4月23日可以不补课吗

    大家好,今天王冬晨为大家整理了一些关于2023年4月23日补星期几的课,4月23日可以不补课吗的案例分析,还有关于星期,假期,节日,时候,不是这些的最新实用干货和分享内容,如果你想要成为这个领域的专家,那么你需要不断学习和总结,这篇文章就是一个好的开始。 2023年4月23日补星期几的课是当前很多人在面临端午假期的时候都有的一疑虑,毕竟拼拼凑凑的假期所占用的…

    2023年4月12日
  • 甲流可以用新冠抗原检测出来吗 以及甲流用新冠抗原检测出二阳性吗

    哈喽,小伙伴们大家好,今天周小艺又来给大家分享一些关于甲流可以用新冠抗原检测出来吗,甲流用新冠抗原检测出二阳性吗的内容,还有关于抗原,阳性,流感,医嘱,症状的一些实用干货内容,如果你想要成为这个领域的专家,那么你需要不断学习和总结,这篇文章就是一个好的开始。 甲流是比较常见的一种病毒,它的传染性比较强,很多人都容易感染生病,尤其是体质比较弱的人。甲流的症状和…

    2023年4月10日
  • 2023大学生春季开学还要带口罩吗最新 重要:大学生开春上学都有什么要求

    大家好,今天承鹏为大家带来一些关于2023大学生春季开学还要带口罩吗最新,大学生开春上学都有什么要求的分享,还有关于大学生,口罩,核酸,用品,师生等一系列实用干货和技巧分享,在这篇文章中,我会为你讲解一些我在这个领域中遇到的问题和解决方法。 随着元宵节的结束,想必很多大学生的寒假都已经开启了倒计时,由于很多人的大学都是跨省市的,所以大家纷纷好奇大学生春季开学…

    2023年5月27日
  • 《骄阳伴我》各个人物关系解析,主要角色扮演者年龄介绍

    大家好,我是本站的特约报道员梦梅,今天给大家带来一篇最新的报道,最近有关《骄阳伴我》各个人物关系解析,主要角色扮演者年龄介绍的新闻屡屡见诸媒体,引起了不少人的关注。现在,就请跟随我一同探究这个事件的具体情况吧! 最近上映的骄阳伴我播出之后引起了一波轰动,吸引了大批观众的关注。在剧情和演员表现方面都是相当的出色,堪称一部成功的佳作。《骄阳伴我》人物介绍是最近非…

    2023年5月17日